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8.1.2 IMPROVING RANGE RESOLUTIDN WITH A FREQUENCY-HOPPING TECHNIQUE
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Department of Electrical and Computer Engineerin_
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INTRODU CT ION '._"

Range resolution of a conventional pulsed Doppler radar is determined by

the scattering volume defined by the transmitted pulse shape p(z). To

increase the resolution, the length of the pulse must be reduced. Reducing

the pulse length, however, also reduces the transmitted power and hence the

signal-to-noise ratio unless the peak power capability of the transmitter is

greatly increased, which is a very expensive process. Improved range reso-

lution may also be attained through the use of various pulse-coding methods,

but such methods are sometimes difficult to implement from a hardware stand-

point. The "frequency-hopping" (F-H) technique to be described increases the

range resolution of pulsed Doppler MST radar without the need for extensive

modifications to the radar transmitter. This technique consists of sending a

repeated sequence of pulses, each pulse in the sequence being transmitted at

a unique radio frequency that is under the control of a microcomputer.

All of the radar parameters in the following discussion, such as pulse-

width and Inter Pulse Period (IPP), apply to the F-H system being developed

for the Urbana radar.

ANALYSIS OF SYST_4

Figure 1 shows one way of representing the pulse train sent by the radar

transmitter. Since the wavelength of each pulse differs from that of its

neighbors by about one centimeter, it is to be expected that echoes from a

turbulent scatterer will differ slightly from each other in phase. Taking

advantage of these phase differences constitutes the crux of the frequency-

hopping technique.

The frequency sequence applied to consecutive transmitter pulses is also

shown in the pulse pattern diagram of Figure 2. For example, at time t = 0,

a pulse is sent at frequency _^I at time t = T , a pulse is sent at

frequency _ + A_, and so fort_. At time t = 16T , the pattern repeats

itself. Th ° range of frequencies covered by the pattern is 750 kHz, with

contiguous frequencies separated by 50 kHz. Notice that the sewtooth wave-

form of Figure 2 repeats itself three times every 1/8 s. The present Urhana

coherent scatter system integrates samples for 1/8 s. Hence, by integrating

samples corresponding to three of the waveforms in Figure 2. the F-H system

possesses a coherently integrated sample length identical to that of the

present coherent scatter system. It must be realized, however, that only

samples taken at the same frequency may be coherently summed. Consequently,

each 1/8-second coherently integrated F-H sample actually consists of 16

subsamples, with each subsample comprised of three individual samples at the

same frequency added together.

Consider the situation that the atmosphere contains only a single

infinitely thin. mirror type scatterer located somewhere within the range

gate z , and moving with a constant velocity v d throughout the collection
of a l_-second coherently integrated data sample. In this case, nonzero

samples are obtained only for range gate z o. Consider also the following
sample sequence x(n):
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Figure 2, Time vs. frequency pulse pattern of the F-H system.

x(n) = BneJ_n (I)

where n = 0, 1, 2 .... , 47. x(n) is the sequence that results from sampling

the radar returns caused by the reflection of the transmitted pulse train

shown in Figure I from the mirror scatterer. Notice that the index of x(n)

takes on the values 0-47. Hence, x(n) consists of all the individual samples

contained in a single 1/8-second coherently integrated F-H sample. B n is

the magnitude of sample n, and _n is the phase.

The mirror scatterer is a delta function in range space; that is, as a

function of z. Consequently, its Fourier transform is a constant for all

values of wave number k. Since radar pulses are scattered by fluctuations in

the index of refraction with a nor_ero Fourier component equal to one-half
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the radar wavelength in the direction of propagation of the pulse, the ideal

mirror scatterer reflects radar pulses at ell frequencies equally well. As a

result. -11 samples of the sequence x(n) have the same magnitude, and

equation (1) may be rewritten as

x(n) = BeJ@n (2)

In order to consider the phase ¢_ of the samples of the sequence

x(n), it is convenient to make the following definitions. Let

f =

v d =
Az

fn =
n

Z ---
n

11384 s

40.52 MHz

50 kHz

the velocity of the scatterer

the distance, at time t = 0, at which the scatterer is

located above or below z . Az must satisfy the relation

I_z) <_1.5 km o
the wavelength of the nth radar pulse

the frequency of the nth radar pulse

_e + (n)1_ A f
heig_ of the scatterer when it reflects the nth radar

pulse

% z +dz + Vd nT

(n)16 = n moOd 16

With these definitions. @n maY be written as

4_

d_n = q Zn

= 4_C [foZo+foAz+foVdnT+(n)16Afzo +(n) 16 Af(Az+vdnT) ]

Substituting the above result for _n into equation (2) yields

(3)

x n = B exp{j_[foZo+foAz+foVdnT+(n)16AfZo+(n)16Af(Az+vdnT)]}

Let us define the constant a as

= _(foZo+foAz)

Using this definition, and noting the property

{j_[(n)!6Afzo]} = iexp

the expression for x(n) may be written as

x(n) = Be j_ exp{j4_[foVdnT+(n)16Af(Az+vdn_)]} (4)

Recall that in each I/8-second coherently integrated F-H sample,

individual samples at the same frequency are to be coherently summed. So if

y(n) is the 16-point sequence that results from adding individual samples at

the same frequency, then

2

y(n) = [ x(16m+n)

m=0
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.4_
3Bexp{3_--[foZo+AZ(fo+nAf)+vd(16T+nT)(fo+nAf)] } (5)

where n = 0. 1 ..... 15. Notice that since the index of the sequence y(n)

has a maximum value of 15. the clumsy modular notation has been dropped.

The third phase term in equation (5) results in a systematic error in

the range estimation of the scatterer, due to the velocity of the scatterer

itself. However. this effect is of concern only if the third phase term is

approximately the same size as the second, which is due to the actual

position of the scatterer. In order to gain an idea of the scatterer

velocity that is necessary for this to occur, the two terms may be set equal.

_Z

Vd 16T+nT

Substituting the worst case values Az = 200m, n = 15 into the equation

above, it becomes clear that the scatterer must be moving with a velocity of

at least v d = 2500 m/s in order for the two terms to be about equal.
Hence. for all practical purposes, the third phase term of equation (5) may

be ignored.

where d
O

Recalling the definition of a, a constant D may be defined as

D = 3B exp(j_). Using this definition and the equation

4_ (nAfAz) n_Az
T =-Fr-o

= 187.5 m, equation (5) may be rewritten as

. .n_Az,

y(n) = D expt3-_--)
O

where n = 0, 1 ..... 15.

(6)

Equation (6) reveals the form of the individual samples in a single 1/8-

second coherently integrated F-H sample, assuming a single mirror-type

scatterer located somewhere within the range gate z As anticipated,
• O" °

each sample has the s_,,e magnitude, and there _s a phase dlfference from one

sample to the next. This intersample phase difference is in fact linear, and

its size depends upon the distance Az of the scatterer from the center of

the scattering volume (z o).

To take advantage of the linear intersample phase shift present in the

sequence y(n) of equation (6), it is possible to simply calculate the DFT of

the sequence. Figure 3 shows graphs of the sequence Y(p) resulting from the

DFT of y(n), assuming different values for Az. It is clear that as Az

becomes more positive, the intersample phase shift in (6) becomes larger, and

the central peak of Y(p) moves up the graph. Conversely, as A z becomes more

and more negative, the central peak of Y(p) wraps around to the top of the

graph, and begins to move down it.

When a 1/8-second coherently integrated F-H sample is obtained from the

atmosphere for range gate z , the value of Az is of course not known. It

is made clear by the graphs°of Figure 3, however, that by taking the DFT of

the individual samples within the coherently integrated sample, it is

possible to deduce the position of the scatterer Az within the scattering

volume by the position of the central peak of Y(p). This fact is the basis

for the improved range reeolutlon offered by the frequency-hopping technique.
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Figure 3. Y(p) for different values of A z.

A more complex analysls involving the convolution of the pulse train in

FiEure 1 with scatterers present in the atmosphere, and taking into account

the coherent detection scheme employed by the Urbana radar, has also been

performed_ it yields results similar to those obtained using the more intui-

tive approach outlined above.

OOMPLICATIONS IN ANALYSIS

All of the values of Az assumed in the graphs of Figure 3 are integer

multiples of d = 187.5 m. d is the basic range resolution of the
o

frequency-hopp°ng system_ integer multiples of d may therefore be termed

"subranEe" gates of the system. Hence, all of th ° scatterers in the graphs of

Figure 3 are assumed to fall exactly in the middle of a subrange 8ate. This

pleasant sltuation is unlikely to be duplicated in the real atmosphere.

FiEures 4(a) and 5(a) show graphs of Y(p) plotted in semilog form for more

arbitrary values of _z. A scatterer is shown startin 8 in the middle of the

third subrange gate, and gradually movin 8 downward until it reaches the point
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halfway between the second and third subrange gates. The central peak of

Y(p) remains in the correct position, but it is now accompanied by undesir-

able sidelobes in the subrange gates that should be zero.

The sidelohes present in the graphs of Figures 4(a) and 5(a) are due to

the fact that the sequence y(n) of equation (6) is unwindowed; or, to be more

precise, a rectangular window has been applied. To reduce the sidelobes, a

window having more gently rounded edges may be used. In other words, we

may derive a new sequence y(n), having more desirable transform properties,

from the old sequence y(n) as follows

t .n_Az_

y(n) = Dn expk3--_--) (7)
o

where D = w(n)D, and w(n) is a windowing sequence of length 16.
n

Figures 4(b) and 5(b) show the effects of selecting a Hamming window

sequence for w(n). A useful reduction in sidelobe level has been achieved,

at the cost of a slight increase in the width of the main peak, or lobe, of

the sequence Y(p).

Although the standard Hamming window quite effectively reduces the

sidelobes of Y(p), the unusual form of the sequence y(n) in equation (7)

makes possible a somewhat more clever approach. Since the weighting sequence

D in (7) is arbitrary, it is possible to specify that D must be
n

symmetrmc about its center. In this case, it may be sho_nn that the DFT of

y(n) can be written as

N
---1
2

Y(_) = I An cos[(2n+l)_2] (8)
n=0

where
A n = A_(n+l)

N=I6

Since a relationship exists between A and D , if values can be found for
• n n

A , then the values of the wemghting coefficients D will be known. One
n n

way of finding appropriate values for A is by solvmng the equation
n

Y(_) = T7(x)

where T7(x) = a seventh order Chebyshev polynomial (9)
x = a cos(_/2 )

a = an arbitrary constant

T.(x) is a polynomial consisting of terms of the form [a cos(_/2)] k,

where k is an odd, positive integer. On the other hand, Y(T) is a polynomial

consisting of terms of the form cos(p _/2), where p is also an odd, positive

integer. In order to solve equation (9), then, trigonometric identities must

be used to reduce terms of the form [a cos ( _/2)] k into terms of the form

cos(p _/2). This can be a very tedious process. Fortunately, operations of

this kind are tabulated in books on antenna engineering (see, e.g, JASIK,

1961).

Figures 4(c) and 5(c) show the results of applying a window of this type

to the sequence of equation (7). Although these results appear very similar

to those obtained using a standard Hamming window, the sidelobe levels and
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mainlobe width have in fact been slightly reduced. A window of this type

should be optimal in the sense of giving the narrowest possible main lobe for

a specified sldelobe level, or vice versa. The main lobe width may be varied

by adjusting the value of the arbitrary constant a. In generating the graphs

of Figures 4(c) and 5(c), the value of a was chosen so that the sidelobe

level is approximately 40 dB below the main lobe peak.

The Urbana radar normally employs a 20_s pulse, so that range gates are

separated by 3.0 km intervals. When the F-H technique is employed, however,

such range gate spacing can cause renge-aliasing problems. In particular,

when a scatterer is located at the boundary of two range gates, it becomes

impossible to determine its correct position. By oversampling at 1.5 km

intervals, it is possible to construct an unaliased vertical profile by

throwlng out the subrange gates at the edges of each range gate, then fit-

ting the remaining subrange gates together in a manner analogous to the

"overlap-save" algorithm used to perform large DFTs (see, e.g., OPPENHEIM

and SCHAFER 1975).

SUMMARY OF DATA ANALYSIS PROCEDURE

At this point, a fairly thorough discussion has been given of the manner

in which a single 1/8-second coherently integrated F-H sample might be

processed. No mention has been made, however, of the way in which an entire

minutes' worth of data for a single range gate is to be processed. Figure 6

shows one way of representing such a block of data. In order to understand

the graph in this figure, it is perhaps easiest to make the following set of

def initi ons :

x(m,n) = a two-dimensiosal data sequence containing one minutes' worth

of F-H data for a single range gate. Each column consists of a

single 1/8-second coherently integrated F-H sample.

M = the number of I/8-second coherently integrated samples in one

minute of data.

N = the number of frequencies at which the F-H system operates. This

number is 16 for the present system.

t' = 1/8 s.

mr' = the time at which the ruth column is collected.

f +nAf = the transmitting frequency corresponding to the nth element of
o

a column.

Assume that the range gate corresponding to the data of Figure 6

contains only one scatterer. Suppose that the one-dimensional DFT of the

first column in Figure 6 is calculated. Earlier discussions suggest that

only one element (or perhaps two) of the resulting column is essentially non-

zero. Precisely which element is nonzero depends, of course, on the position

of the scatterer within the scattering volume. Now suppose that the one-

dimensional DFTs of all of the columns in Figure 6 are taken. After the

completion of these operations, only one row of the resulting graph is

essentially nonzero. The position of that row may be used to determine the

position of the scatterer within the scattering volume. By taking the

one-dimensional autocorrelation function of the nonzero row, the usual

parameters of velocity, power, and correlation time may be derived for the

single scatterer.
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Representation for one minute of data in a single range gate of

the F-H system.

Thus, a one-minute block of data, such as that represented in Figure 6,
may be processed in five steps:

(1) Each column of the two-dimensional sequence is windowed using a

Chebyshev window of the type discussed earlier.

(2) Each column of the sequence is transformed using a one-dlmenslonal

DFT.

(3) Undesired rows are thrown out using the overlap-save algorithm

discussed earlier.

(4)

(5)

The one-dimensional autocorrelation function of each of the remaln" -

in 8 rows is found.

The usual velocity, power, and correlation time parameters are
derived for each row.
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